If it's not what You are looking for type in the equation solver your own equation and let us solve it.
325=a^2
We move all terms to the left:
325-(a^2)=0
We add all the numbers together, and all the variables
-1a^2+325=0
a = -1; b = 0; c = +325;
Δ = b2-4ac
Δ = 02-4·(-1)·325
Δ = 1300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1300}=\sqrt{100*13}=\sqrt{100}*\sqrt{13}=10\sqrt{13}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{13}}{2*-1}=\frac{0-10\sqrt{13}}{-2} =-\frac{10\sqrt{13}}{-2} =-\frac{5\sqrt{13}}{-1} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{13}}{2*-1}=\frac{0+10\sqrt{13}}{-2} =\frac{10\sqrt{13}}{-2} =\frac{5\sqrt{13}}{-1} $
| 0.20=x^2/25-x | | x+0.05*x=13000 | | (p^2)+23p=0 | | 20=t/5 | | (4x+7)(2x+5)=0 | | 29d^2-343d+84=0 | | 3y-28+11+11=180 | | (c-3)=(c²-2c+3) | | 300x-3=120+2 | | 10=|3x+7| | | 3y-28+11=180 | | 3x-22+77+77=180 | | (8j^2)-21j=0 | | 6x-9=12-7 | | (g^2)+40g=0 | | 100-20h=-h^2 | | x^2-9x-62=0 | | q2+ 9=12 | | ×=4/13x/5 | | 21x-1=18x+1 | | m8+13=37 | | 2x-1=18x+1 | | -2y-25=19 | | Nx3=12+N | | 8q=q^2-7 | | 4v^2+24v+11=0 | | (42z^2)+19z=0 | | (5n^2)+14n+8=0 | | (x-9)+(x+5)=168 | | (x-9)(x+5)=168 | | -8(2y+2)=0 | | -4(-r+2)=4 |